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Modeling Selection Against Introgression

Ivan Juric, Simon Aeschbacher, Graham Coop

Here, we describe several models of a single pulse of admixture between Neanderthals and

modern humans, and derive approximations for the present-day frequency of a neutral intro-

gressed Neanderthal allele linked to one or multiple sites under purifying selection in humans.

We then demonstrate the accuracy of these approximations by comparing them to numerically

iterated recursion equations and individual-based simulations. Lastly, we consider models of sin-

gle and multiple waves of continuous introgression and show that one cannot distinguish between

these models and a single-pulse admixture model using the present-day frequency of introgressed

alleles as the only source of information.

Single-pulse introgression models

In the following, we derive deterministic approximations to the frequency of a neutral allele

linked to loci under purifying selection after a single pulse of admixture. We consider a neutral

polymorphism on an autosome and on the X chromosome, and in both cases we allow for one or

multiple linked loci under selection.

A single autosomal locus under selection

We model the allele-frequency dynamics at a neutral locus linked to a selected locus following

a single pulse of admixture (introgression) from the Neanderthal population that happened t

generations ago. Let N1 and N2 be the Neanderthal and human alleles at the neutral locus,

and S1 and S2 the two alleles at the locus under selection. We denote the recombination rate

between the two loci by r, and assume that the Neanderthal-derived allele S1 is deleterious

in humans. Specifically, the viability of a human individual heterozygous at the locus under

selection is w12 = w21 = 1− s, where 0 < s < 1, and the viability of a human S2 homozygote is

w22 = 1. We further assume that the frequency of S1 in humans is low, so that the deleterious
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S1S1 homozygotes are very rare and can be ignored. Numerical and individual-based simulations

(see below) show that this assumption is reasonable for the parameter values we consider. We

assume that, prior to admixture, Neanderthals and humans were fixed for allele N1 and N2,

respectively. At the time of introgression, the frequency of N1 rises instantaneously from 0 to p0

in the human population.

In the following, we describe how pt, the frequency of N1 t generations after introgression,

depends on its initial frequency p0, the heterozygote selection coefficient s, and the recombination

rate r. Let x0 and y0 denote the frequency of haplotypes S1N1 and S2N1 in humans at the time

of admixture. Hence, the frequency of allele N1 immediately after admixture is

p0 = x0 + y0. (1)

In the following we assume that x0 +y0 � 1, and so we can ignore the effects of selection against

homozygotes.

After recombination and random union of gametes, the haplotype frequencies in zygotes can

be approximated by

x∗0 = x0(1− r), (2a)

y∗0 = x0r + y0, (2b)

still assuming that S1 is initially rare in humans.

After viability selection, the haplotype frequencies in the next generation of adult humans

become

x1 = x∗0(1− s) = x0(1− r)(1− s), (3a)

y1 = y∗0 = x0r + y0. (3b)

From here, it is straightforward to obtain the explicit equations for the haplotype frequencies at

generation t as

xt = x0[(1− r)(1− s)]t, (4a)

yt = r

t−1∑
i=0

xi + y0. (4b)
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This can be simplified to

xt = x0[(1− r)(1− s)]t, (5a)

yt = x0r
1− [(1− s)(1− r)]t

1− (1− r)(1− s)
+ y0. (5b)

Plugging equation (5) into equation (1), we obtain

pt = x0f(r, s, t) + y0, (6)

where

f(r, s, t) =
[(1− r)(1− s)]t[1− r − (1− r)(1− s)] + r

1− (1− r)(1− s)
. (7)

As time t goes to infinity, f(r, s, t) approaches Bengtsson’s [1] gene flow factor for the case when

selection happens before migration (cf. Eq. A3 in [2]):

p∞ = x0
r

1− (1− r)(1− s)
+ y0. (8)

If s and r are small, at equilibrium f(r, s, t) further simplifies to r/(r + s), which is equal to

the approximation to the effective rate of gene flow found by Petry [3] based on a diffusion

approximation. If y0 = 0, we can replace x0 by p0 in the equations above.

A single X-chromosomal locus under selection

The non-pseudoautosomal X chromosome is a special case, because of the differences in trans-

mission and the fact that recombination only happens in females. We take this into account by

modifying Eq. (2) to

x∗X,0 =
2

3
xX,0(1− r) +

(
1− 2

3

)
xX,0 = xX,0

(
1− 2

3
r

)
, (9a)

y∗X,0 =
2

3
xX,0r + yX,0. (9b)

The factor of 2/3 accounts for the fact that two thirds of all X chromosomes are found in females.

As above, we assume that selection acts on viability and after recombination and random

mating, but we now allow for selection to be sex specific. We denote by sf and sm the strength

of selection against female and male carriers of a single S1 allele, respectively. Recalling that, at

the time of selection, a proportion of 2/3 of the X chromosomes are found in females, and 1/3
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in males, we obtain the haplotype frequencies in adults of the next generation as

xX,1 =
2

3
x∗X,0(1− sf ) +

1

3
x∗X,0(1− sm)

= xX,0

(
1− 2

3
r

)(
1− 1

3
sm −

2

3
sf

)
, (10a)

yX,1 = y∗X,0

=
2

3
xX,0r + yX,0. (10b)

Iteration of Eq. (10) yields the explicit haplotype frequencies at time t,

xX,t = xX,0

[(
1− 2

3
r

)(
1− 1

3
sm −

2

3
sf

)]t
, (11a)

yX,t = rxX,0
2

3

1−
[(

1− 2
3r
) (

1− 1
3sm −

2
3sf
)]t

1−
(
1− 2

3r
) (

1− 1
3sm −

2
3sf
) + yX,0. (11b)

The frequency of allele N1 at time t, pX,t = xX,t + yX,t, can therefore be written as

pX,t = xX,0

(
1− 2

3r
)t+1 (

1− 1
3sm −

2
3sf
)t ( 1

3sm + 2
3sf
)

+ 2
3r

1−
(
1− 2

3r
) (

1− 1
3sm −

2
3sf
) + yX,0. (12)

By setting sf = sm = s and allowing recombination to happen in the entire population, i.e.

by replacing 1/3 and 2/3 by 0 and 1, respectively, we recover Eq. (6), as expected. At equilibrium

(t =∞), Eq. (12) becomes

pX,∞ = xX,0

2
3r

1−
(
1− 2

3r
) (

1− 1
3sm −

2
3sf
) + yX,0, (13)

which can be approximated as

pX,∞ ≈ xX,0
2
3r

1
3sm + 2

3sf + 2
3r

+ yX,0

= xX,0

(
1 +

1
2sm + sf

r

)−1
+ yX,0

(14)

if both selection and recombination are weak (sm, sf , r � 1).

Multiple autosomal loci under selection

In the following, we consider a neutral locus embedded in a suite of multiple autosomal loci

under purifying selection. Due to the complexities of multilocus models, we make the following

simplifications. First, we assume that, immediately before introgression, all deleterious alleles
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were fixed in Neanderthals, but absent in humans. Second, we directly consider the situation

where the frequency of the neutral Neanderthal-derived alleles has reached equilibrium in the

human population (i.e. t = ∞). This can be justified if purifying selection is strong relative to

the time since introgression, the admixture proportion, and the recombination rate. Third, we

directly draw on the above-mentioned analogy between the surviving proportion of a cohort of

introgressed alleles and the effective rate of gene flow at a neutral locus experiencing linkage-

mediated selection (cf. Eq. 7 and subsequent text). We can therefore approximate the equilibrium

frequency of the introgressed neutral allele N1 by modifying the multilocus version of the effective

migration rate in Eq. (24) of reference [4].

Specifically, let there be I and J loci under selection on the left- and right-hand side of the

focal neutral site, and denote them by Ai and Bj , respectively. The equilibrium frequency of the

introgressed neutral allele N1 can then be approximated as

p∞,IJ ≈ p0
(

1 +
a1
rA1

)−1
×

I∏
i=2

(
1 +

ai∑i−1
k=1 ak + rAi

)−1

×
(

1 +
b1
rB1

)−1
×

J∏
j=2

(
1 +

bj∑j−1
k=1 bk + rBj

)−1
,

(15)

where ai and bi are the selection coefficients against the deleterious mutations at locus Ai and Bj ,

respectively, and rAi and rBj are the recombination fractions between the neutral locus and the

respective locus under selection. Equation (15) assumes that both selection and recombination

are weak.

If we set the selection coefficient at all loci under selection to the same value s, Eq. (15)

simplifies to

p∞,IJ ≈ p0
I∏
i=1

[
1 +

s

s(i− 1) + ri

]−1 J∏
j=1

[
1 +

s

s(j − 1) + rj

]−1
, (16)

where ri and rj are short cuts for rAi and rBj , respectively.

To assess the accuracy of Eq. (15), we derived discrete-time recursion equations for a model

with one neutral and two selected loci. As before, we assumed that the admixture proportion

is small, so that homozygous carriers of Neanderthal-derived alleles are very rare in the human

population and the dynamics of the full diploid model can be approximated by considering a

haploid model with four haplotypes. In addition, we assumed that the mean fitness of the human

population was not affected by the few carriers of deleterious introgressed mutations. To simplify

our notation, we denote the two loci under selection by A and B, and use A1 (A2) and B1 (B2) for
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the deleterious (advantageous) alleles at locus A and B, respectively. We consider the following

two configurations: one in which the neutral locus N is flanked by one locus under selection on

each side (A–N–B), and another where the neutral locus is flanked by two selected loci on one side

(A–B–N). We denote by rXY the recombination rate between locus X and Y, where rXY = rYX,

and we assume that recombination distances accumulate additively across loci.

For configuration A–N–B, the four focal haplotypes are A1N1B1, A1N1B2, A2N1B1, and

A2N1B2. We denote their frequencies among adults of generation t after viability selection but

before recombination and random mating by x1(t), x2(t), x3(t), and x4(t), respectively. After

recombination, random mating, and viability selection, the haplotype frequencies among adults

of the next generation are

x1(t+ 1) = w1 (1− rAN) (1− rBN)x1(t),

x2(t+ 1) = w2 [(1− rAN) rBNx1(t) + (1− rAN + rANrBN)x2(t)] ,

x3(t+ 1) = w3 [rAN (1− rBN)x1(t) + (1− rBN + rANrBN)x3(t)] ,

x4(t+ 1) = w4 [rANrBNx1(t) + rAN (1− rBN)x2(t)

+ (1− rAN) rBNx3(t) + x4(t)] ,

(17)

where wi denotes the relative fitness of haplotype i.

For configuration A–B–N, the four focal haplotypes are A1B1N1, A1B2N1, A2B1N1, and

A2B2N1. In this case, the haplotype frequencies follow the following recursions:

x1(t+ 1) = w1 (1− rAB) (1− rBN)x1(t),

x2(t+ 1) = w2 (1− rAB + rABrBN)x2(t),

x3(t+ 1) = w3 [rAB (1− rBN)x1(t) + (1− rBN)x3(t)] ,

x4(t+ 1) = w4 [rBNx1(t) + rAB (1− rBN)x2(t) + rBNx3(t) + x4(t)] .

(18)

For both configurations, the frequency of the introgressed neutral allele N1 at time t can be

approximated by

pt = p(t) =

4∑
i=1

xi(t), (19)

where the xi(t) evolve according to Eq. (17) and (18), depending on the configuration.
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We assume that fitness is additive across loci, and parametrize it as

w1 = 1− a− b,

w2 = 1− a,

w3 = 1− b,

w4 = 1,

(20)

where 0 ≤ a, b ≤ 1.

We numerically iterated Eqs. (17) and (18) and computed pt according to Eq. (19) at each

step until an equilibrium was reached. Specifically, we terminated the process when the absolute

difference between consecutive predicted allele frequencies pt and pt+1 became smaller than 10−9.

We also iterated Eqs. (17) and (18) over a fixed number of t = 2000 generations and computed

pt. The approximation in Eq. (15) performs very well if the underlying assumptions are met

and an equilibrium has been reached (S6 Fig). However, if an equilibrium has not been reached,

the approximation in Eq. (15) should not be used (compare upward black triangles to respective

black curves in S6 Fig). Moreover, if the assumption of recombination being weak relative to

selection is violated, Eq. (15) tends to underestimate the actual equilibrium frequency of the

neutral introgressed allele, as expected. This effect is particularly strong if genetic distances

between consecutive linked loci under selection are highly asymmetric (compare blue triangles

and respective blue curves in S6 Fig B for weak rAB).

Multiple X-chromosomal loci under selection

Finally, we turn to the case of a neutral locus linked to multiple loci under selection on the X

chromosome. Our results for the autosomes indicate that estimates obtained under the single-

and multilocus models are in close agreement. Given that our estimates for the X chromosome

under a single-locus model are in a similar region of parameter space, we do not fit this final,

multilocus model to data from the X chromosome, but we include it here for completeness. Let

there be I and J loci under selection on the left- and right-hand side of the focal neutral site, and

denote them by Ai and Bj , respectively, where i = 1, . . . , I and j = 1, . . . , J . Together, our Eq.

(13) and Eq. (24) from reference [4] suggest that the equilibrium frequency of the introgressed
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neutral allele N1 may be approximated as

pX,∞,IJ ≈ pX,0
(

1 +
1
2a1,m + a1,f

rA1

)−1
×

I∏
i=2

[
1 +

1
2ai,m + ai,f∑i−1

k=1

(
1
2ak,m + ak,f

)
+ rAi

]−1

×
(

1 +
1
2b1,m + b1,f

rB1

)−1
×

J∏
j=2

[
1 +

1
2bj,m + bj,f∑j−1

k=1

(
1
2bk,m + bk,f

)
+ rBj

]−1
,

(21)

where ai,f (ai,m) and bj,f (bj,m) are the coefficients of selection against heterozygous carriers of

the deleterious mutation at locus Ai and Bj in females (males). Moreover, rAi and rBj are the

recombination rates between the neutral locus and locus Ai and Bj , respectively. The factor of

1/2 accounts for the fact that a given X-chromosomal haplotype spends half of its time in males

relative to the time spent in females.

If we fix the selection coefficients in females and males across all loci to sf and sm as above,

Eq. (21) simplifies to

pX,∞,IJ ≈ pX,0
I∏
i=1

[
1 +

1
2sm + sf(

1
2sm + sf

)
(i− 1) + 2

3ri

]−1

×
J∏
j=1

[
1 +

1
2sm + sf(

1
2sm + sf

)
(j − 1) + 2

3rj

]−1
,

(22)

where ri and rj are short cuts for rAi and rBj , respectively.

To test our conjecture in Eq. (21), we derived discrete-time recursions for a model with one

neutral and two selected loci analogous to those in Eq. (17) and (18), but for the case of the X

chromosome. As before, we assumed that the admixture proportion is small, so that the diploid

model can be approximated by a haploid model with four haplotypes, and the mean fitness of the

human population is not affected by introgression of deleterious mutations. We again simplify

our notation by denoting the two loci under selection by A and B, and we use A1 (A2) and

B1 (B2) for the deleterious (advantageous) alleles at locus A and B, respectively. As above,

we consider the two configurations A–N–B and A–B–N, and assume that recombination rates

accumulate additively across loci.

For configuration A–N–B, the four haplotypes of interest are A1N1B1, A1N1B2, A2N1B1,
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and A2N1B2, and their frequencies after recombination in generation t are given by

x∗1(t) =
1

3
x1(t) +

2

3
(1− rAN) (1− rBN)x1(t),

x∗2(t) =
1

3
x2(t) +

2

3
[(1− rAN) rBNx1(t) + (1− rAN + rANrBN)x2(t)] ,

x∗3(t) =
1

3
x3(t) +

2

3
[rAN (1− rBN)x1(t) + (1− rBN + rANrBN)x3(t)] ,

x∗4(t) = x4(t)

+
2

3
[rANrBNx1(t) + rAN (1− rBN)x2(t) + (1− rAN) rBNx3(t)] ,

(23)

respectively. After random mating and viability selection, the frequency of haplotype i among

adults in the next generation is

xi(t+ 1) =
1

3
mix

∗
i (t) +

2

3
fix
∗
i (t), (24)

where mi and fi are the relative fitnesses of haplotype i in males and females, respectively. The

frequency of the introgressed neutral allele N1 at time t is then obtained from Eq. (19), where

the xi(t) behave as described in Eq. (24).

For configuration A–B–N, the four haplotypes of interest are A1B1N1, A1B2N1, A2B1N1,

and A2B2N1. Their frequencies after recombination in generation t are

x∗1(t) =
1

3
x1(t) +

2

3
(1− rAB) (1− rBN)x1(t),

x∗2(t) =
1

3
x2(t) +

2

3
(1− rAB + rABrBN)x2(t),

x∗3(t) =
1

3
x3(t) +

2

3
[rAB (1− rBN)x1(t) + (1− rBN)x3(t)] ,

x∗4(t) = x4(t) +
2

3
[rBNx1(t) + rAB (1− rBN)x2(t) + rBNx3(t)] ,

(25)

respectively. Note that rAN = rAB + rBN by assumption. Equations (24) and (19) remain

unchanged.

As above, we assume that fitness is additive across loci. For females, we parametrize fitnesses

as

f1 = 1− af − bf ,

f2 = 1− af ,

f3 = 1− bf ,

f4 = 1,

(26)
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and for males, we set

m1 = 1− am − bm,

m2 = 1− am,

m3 = 1− bm,

m4 = 1,

(27)

where 0 ≤ af , am, bf , bm ≤ 1.

We numerically iterated Eq. (24) and computed pt according to Eq. (19) at each step until

an equilibrium was reached. As above, we terminated the process when the absolute difference

between consecutive allele frequencies pt and pt+1 became smaller than 10−9. We also iterated

Eq. (24) over a fixed number of t = 2000 generations and computed pt. As expected, our

conjecture in Eq. (21) provides a very good approximation if the underlying assumptions are

met and an equilibrium has been reached (S7 Fig). However, as in the autosomal case discussed

above, if an equilibrium has not been reached, or if the assumption of recombination being weak

relative to selection is violated, the approximation in Eq. (21) tends to underestimate the actual

frequency of the neutral introgressed allele (S7 Fig).

Evaluating the accuracy of approximations

We evaluated the accuracy of Eqs. (6) and (12) in two ways. For each test we chose the range

of values of r based on the size of genomic windows used in our analysis of the human data.

We chose the range for s such that it includes the point estimate obtained from our inference

procedure (see S2 Text for details).

First, we tested the effects of ignoring homozygous individuals by numerically iterating

discrete-time recursions for a model with two loci under selection, after setting the selection

coefficient at one of these to zero. For the case of autosomes, we used the recursions given in Eq.

(2.9) on page 45 in reference [5] (cf. [6]). For the X chromosome, we used those from Eq. (10) in

reference [7] after correcting them by substituting F for 2F . We verified Eqs. (6) and (8), and

Eqs. (12) and (13) by comparison to values obtained through iteration of the recursions for the

autosomes and X chromosome, respectively. To obtain the equilibrium values using recursions,

we iterated the latter until the difference in allele frequency between two generations was less

than 10−9. The results of this comparison suggest that ignoring homozygous individuals does

not affect pt substantially (S1 Fig–S4 Fig).

Our inference method (S2 Text) is based on the deterministic expressions for the Neanderthal
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allele frequency derived above, and we view drift as ‘noise’ around these expectations. In a sec-

ond test, we therefore assessed whether genetic drift has a substantial influence on the average

frequency of the focal neutral allele. We did this by performing individual-based simulations and

calculating the difference between the frequency of the neutral alleles after t = 2000 generations

(pt,sim) and that obtained from Eq. (6) with t = 2000. For the individual-based simulations, we

assumed a single constant population size of N = 10, 000 diploid individuals of which 2Np0 are

double heterozygous (N2S2/N1S1) at the start. Generations are non-overlapping. We modeled

soft selection and assumed a multiplicative fitness scheme. This means that individuals homozy-

gous for deleterious allele have fitness (1− s)2. Plotting pt,sim against pt along with approximate

95% CI for pt,sim, we found a good agreement between average observed and expected determin-

istic results (S5 Fig). This shows that our approach of using deterministic equations is valid in

our parameter regime.

In conclusion, our tests suggest that for the parameter range of interest, our approximations

describe the expected frequency of neutral alleles well.

Models of waves of introgression

Hybridization with Neanderthals likely happened over many generations, rather than in one

generation as we assumed above with the single-pulse admixture model. Furthermore, there is

evidence of at least two waves of Neanderthal introgression into the East Asian population [8–11].

In this section, we derive expressions for the present-day frequency of a neutral Neanderthal

allele linked to a single locus exposed to purifying selection under a number of more complicated

models. Specifically, we start by considering how haplotype frequencies change over time during

continuous introgression. We then use this result to derive the equivalent expressions for models

with one and two discrete waves of introgression. Lastly, we show that the a single-pulse model

cannot be distinguished from the wave models if the onset and duration of admixture periods

are unknown.

Haplotype frequencies during continuous introgression

In the simplest model of continuous introgression, each generation a constant fraction of N1S1

and N1S2 haplotypes flow into the human population. We consider a slightly more complex

model where the fraction of haplotypes that introgresses into humans at the initial admixture

event is x0 and y0, but mx0 and ny0 for all future generations, where m > 0 and n > 0. This

parametrization will be useful when we derive a model of two waves of introgression below.
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The following events happen each generation: 1) admixture (inflow of Neanderthal alleles)

at the adult stage, 2) recombination, mating, gamete production, random union of gametes, and

3) viability selection. During the initial admixture event, the frequency of N1S1 and N1S2 in

humans rises instantaneously from 0 to x0 and y0, respectively. Recombination and viability

selection then alter the haplotype frequencies according to Eq. (2) and (3), respectively. From

the first generation onward, introgression increases the frequency of Neanderthal haplotypes in

humans by mx0 and ny0. Therefore, for generations t = 1, 2, 3, . . . , the haplotype frequencies

after admixture become

x◦t = xt + x0m,

y◦t = yt + y0n.

(28)

After recombination, we have

x∗t = x◦t (1− r),

y∗t = x◦t r + y◦t ,

(29)

and after viability selection, the haplotype frequencies among adults in the next generation are

xt+1 = x∗t (1− s),

yt+1 = y∗t .

(30)

Using the same methods as for the single-pulse model, we find the explicit expressions for the

frequency of N1S1 and N1S2 in the human population in generation t as

xt = x0

(
Gt +m

Gt −G
G− 1

)
,

yt = x0r

[
1 +

Gt −G
G− 1

+m
Gt − tG+ t− 1

(G− 1)2

]
+ y0[1 + (t− 1)n],

(31)

where

G = (1− r)(1− s). (32)

Single-wave introgression model

We now consider a model with a single wave of continuous introgression over τ generations,

after which introgression stops. Therefore, during the first τ generations, haplotype frequencies

change according to the model of continuous introgression discussed above (Eq. 31). For t > τ ,

haplotype frequencies change according to the single-pulse model with initial frequencies xτ and
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yτ (Eq. 5). Therefore we can write

xt =


x0

(
Gt +mGt−G

G−1

)
if t ≤ τ ,

xτG
t−τ if τ < t,

(33)

and

yt =


x0r

[
1 + Gt−G

G−1 +mGt−tG+t−1
(G−1)2

]
+ y0[1 + (t− 1)n] if t ≤ τ ,

xτr
(

1−Gt−τ
1−G

)
+ yτ if τ < t,

(34)

where

xτ = x0

(
Gτ +m

Gτ −G
G− 1

)
,

yτ = x0r

[
1 +

Gτ −G
G− 1

+m
Gτ − tG+ τ − 1

(G− 1)2

]
+ y0[1 + (τ − 1)n],

m = n = 1.

(35)

Dual-wave introgression model

It is straighforward to extend the model of a single wave of continuous introgression to include

further waves. We do this here for a second wave. Specifically, introgression occurs during a

first wave of length τ1 generations, after which it stops until generation τ2, when the second

wave of introgression starts. The second wave ends at generation τ3. Up until τ2 this model is

equivalent to the single-wave introgression model introduced above. Therefore, the expressions

for xt and yt for t ≤ τ2 are given by Eqs. (33) and (34), after replacing τ by τ1. At generation

τ2, introgression starts again, but the initial haplotype frequencies are now xτ2 and yτ2 , rather

than 0. This situation is equivalent to the continuous introgression model starting from t = 1

(rather than t = 0) and with x0 and y0 replaced by xτ2 and xτ2 .

Then, the expressions for xt and yt can be found to be

xt =



x0

(
Gt +mGt−G

G−1

)
if t ≤ τ1,

xτ1G
t−τ1 if τ1 < t ≤ τ2,

xτ2

(
Gt−τ2+1 +mτ2

Gt−τ2+1−G
G−1

)
if τ2 < t ≤ τ3,

xτ3G
t−τ3 if τ3 < t,

(36)
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and

yt =



x0r
[
1 + Gt−G

G−1 +mGt−tG+t−1
(G−1)2

]
+ y0 [1 + (t− 1)n] if t ≤ τ1,

xτ1r
1−Gt−τ1

1−G + yτ1 if τ1 < t ≤ τ2,

xτ2r
[
1 + Gt−τ2+1−G

G−1 +mτ2
Gt−τ2+1−(t−τ2+1)G+(t−τ2+1)−1

(G−1)2

]
+yτ2 [1 + (t− τ2)nτ2 ] if τ2 < t ≤ τ3,

xτ3r
1−Gt−τ3

1−G + yτ3 if τ3 < t,

(37)

where

xτ1 = x0

(
Gτ1 +m

Gτ1 −G
G− 1

)
,

xτ2 = xτ1G
τ2−τ1 ,

xτ3 = xτ2

(
Gτ3−τ2+1 +mτ2

Gτ3−τ2+1 −G
G− 1

)
,

yτ1 = x0r

[
1 +

Gτ1 −G
G− 1

+m
Gτ1 − τ1G+ τ1 − 1

(G− 1)2

]
+ y0[1 + (τ1 − 1)n],

yτ2 = xτ1r

(
1−Gτ2−τ1

1−G

)
+ yτ1 ,

yτ3 = xτ2r

[
1 +

Gτ3−τ2+1 −G
G− 1

+mτ2

Gτ3−τ2+1 − (t− τ2 + 1)G+ (τ3 − τ2 + 1)− 1

(G− 1)2

]
,

+ yτ2 [1 + (τ3 − τ2)nτ2 ],

m = n = 1,

mτ2 = x0/xτ2 ,

nτ2 = y0/yτ2 .

(38)

In both the single-pulse and wave models, haplotype frequencies change at the same rate once

introgression stops, and this change is determined by r and s. The difference is that the haplotype

frequencies at the time when introgression stops can vary under different models. However,

if we do not know the duration of the waves of introgression or the time between them, we

can always represent wave models as a single-pulse model in which the pulse happened more

recently. To approximately map the single-wave model to the single-pulse model, we replace t

by t− [τ − (lnxτ − lnx0)/ lnG] in Eq. (5). To do the same for the dual-wave model, we replace

t by t − [τ3 − (lnxτ3 − lnx0)/ lnG]. The effect of this approximation is that after the time of

the last introgression, the single-pulse and wave models are indistinguishable (S8 Fig). That

is, we have shown that, if one does not know the details of introgression, it is impossible to

distinguish between the single-pulse and wave models based only on the present-day frequency of

14



Neanderthal alleles. Therefore, the single-pulse model is a good model for our analysis, despite

the fact that it is obviously an approximation.
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S1 Fig

Approximate frequency pt of N1 as a function of the recombinational distance r.

Lines represent Eq. (6) for t = 2000 (red) and the equilibrium given in Eq. (8) (grey). Numerical

iterations of the corresponding recursion equations are represented by red upward and black

downward facing triangles. Other parameters are s = 0.0001, and y0 = 0 for all lines, and

p0 = 0.04 (dotted), 0.034 (dashed) and 0.03 (full line).

S2 Fig

Approximate frequency pt of N1 as a function of the recombinational distance r.

Lines represent Eq. (6) for t = 2000 (red) and the equilibrium given in Eq. (8) (grey). Numerical

iterations of the corresponding recursion equations are represented by red upward and black

downward facing triangles. Other parameters are s = 0.0004, and y0 = 0 for all lines, and

p0 = 0.04 (dotted), 0.034 (dashed) and 0.03 (full line).

S3 Fig

Approximate frequency pt of N1 as a function of the recombinational distance r for

the X chromosome. Lines represent Eq. (12) for t = 2000 (red) and the equilibrium from Eq.

(13) (grey). Numerical iterations of the corresponding recursion equations are represented by

red upward and black downward facing triangles. Other parameters are sf = sm = 0.0001, and

yX,0 = 0 for all lines, and p0 = 0.04 (dotted), 0.034 (dashed) and 0.03 (full line).

S4 Fig

Approximate frequency pt of N1 as a function of the recombinational distance r for

the X chromosome. Lines represent Eq. (12) for t = 2000 (red) and the equilibrium from Eq.

(13) (grey). Numerical iterations of the corresponding recursion equations are represented by

red upward and black downward facing triangles. Other parameters are sf = sm = 0.0004, and

yX,0 = 0 for all lines, and p0 = 0.04 (dotted), 0.034 (dashed) and 0.03 (full line).

S5 Fig

Comparison of the mean frequency of N1 obtained from individual-based simulations

to the theoretical prediction from Eq. (6). The figure shows 676 circles representing different

combinations of r (recombination rate) and s (selection coefficient). Values of r range from

1 × 10−5 (red circle border) to 1 × 10−2 (black border), s ranges from 1 × 10−5 (yellow circle
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area) to 4× 10−4 (light blue area). For each parameter combination, the mean frequency of N1

after t = 2000 generations was calculated across 1000 independent runs. Grey lines represent

approximate 95% confidence intervals for simulation results (mean ±1.96 × standard error), and

a black line with slope 1 is shown for reference.

S6 Fig

Accuracy of approximation to the frequency of a neutral allele N1 linked to multiple

autosomal loci under purifying selection. Curves show p∞,IJ from Eq. (15) for various

recombination distances between the focal neutral locus N and the two loci under selection, A

and B. Upward and downward facing triangles give values obtained after iterating deterministic

recursions over t = 2000 generations and until the equilibrium is reached, respectively. A: The

neutral locus is flanked by one locus under selection on each side, and recursions followed Eq.

(17). B: The neutral locus is flanked by two selected loci on one side and recursions followed Eq.

(18). A, B: Selection coefficients against introgressed deleterious mutations at locus A and B are

a = 0.0002 and b = 0.0004, respectively. The initial frequency of N1 is p0 = 0.04.

S7 Fig

Accuracy of approximation to the frequency of a neutral allele N1 linked to multi-

ple X-chromosomal loci under purifying selection. Curves show pX,∞,IJ from Eq. (21)

for various recombination distances between the focal neutral locus N and the two loci under

selection, A and B. Upward and downward facing triangles give values obtained after iterating

Eq. (24) over t = 2000 generations and until the equilibrium is reached, respectively. A, B: The

neutral locus is flanked by one locus under selection on each side. C, D: The neutral locus is

flanked by two loci under selection on one side. A, C: Selection coefficients against introgressed

deleterious mutations at locus A and B in females (males) are af = 0.0001 (am = 0.0003) and

bf = 0.0002 (bm = 0.0006), respectively. B, D: Selection coefficients are identical in the two

sexes; af = am = 0.0001 and bf = bm = 0.0002. In all panels, the initial frequency of N1 is

pX,0 = 0.04.

S8 Fig

Mapping models with one (red line) and two (blue line) waves of introgression to

a single-pulse model. By changing time in the single-pulse model (dashed and dotted black

lines) as described in S1 Text, we can recover present-day haplotype frequencies generated by the
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wave models. Parameters are r = 10−4, s = 5×10−4, x0 = 0.04, and y0 = 0.001. The duration of

admixture in the single-wave model is τ = 500. Additional parameters for the dual-wave model

are τ1 = 75, τ2 = 1075, τ3 = 1500. The solid black line represents a single-pulse model without

change of time.
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